Kabisch UC, Grantzdorffer A, Schierhorn A, Rucknagel KP, Andreesen JR, Pich A
Title
Identification of D-proline reductase from Clostridium sticklandii as a selenoenzyme and indications for a catalytically active pyruvoyl group derived from a cysteine residue by cleavage of a proprotein.
Kabisch UC, Grantzdorffer A, Schierhorn A, Rucknagel KP, Andreesen JR, Pich A
Title
Identification of D-proline reductase from Clostridium sticklandii as a selenoenzyme and indications for a catalytically active pyruvoyl group derived from a cysteine residue by cleavage of a proprotein.
Also acts, more slowly, on 2,5-diaminohexanoate forming 2-amino-5-oxohexanoate, which then cyclizes non-enzymically to 1-pyrroline-2-methyl-5-carboxylate. It has equal activity with NAD+ and NADP+ [cf. EC 1.4.1.26, 2,4-diaminopentanoate dehydrogenase (NAD+)].
Ornithine metabolism by Clostridium sticklandii. Oxidation of ornithine to 2-amino-4-ketopentanoic acid via 2,4-diaminopentanoic acid; participation of B12 coenzyme, pyridoxal phosphate, and pyridine nucleotide.
5-aminopentanoate [CPD:C00431];
[PrdC protein with a selenide-sulfide bridge]
Product
D-proline [CPD:C00763];
[PrdC protein with thiol/selenol residues]
Comment
A pyruvoyl- and L-selenocysteine-containing enzyme found in a number of Clostridial species. The pyruvoyl group, located on the PrdA subunit, binds the substrate, while the selenocysteine residue, located on the PrdB subunit, attacks the alpha-C-atom of D-proline, leading to a reductive cleavage of the C-N-bond of the pyrrolidine ring and formation of a selenoether. The selenoether is cleaved by a cysteine residue of PrdB, resulting in a mixed selenide-sulfide bridge, which is restored to its reduced state by another selenocysteine protein, PrdC. 5-aminopentanoate is released from PrdA by hydrolysis, regenerating the pyruvoyl moiety. The resulting mixed selenide-sulfide bridge in PrdC is reduced by NADH.
History
EC 1.21.4.1 created 1972 as EC 1.4.4.1, modified 1982 (EC 1.4.1.6 created 1961, incorporated 1982), transferred 2003 to EC 1.21.4.1, modified 2018
Studies on the enzymic reduction of amino acids. II. Purification and properties of D-proline reductase and a proline racemase from Clostridium sticklandii.
Kabisch UC, Grantzdorffer A, Schierhorn A, Rucknagel KP, Andreesen JR, Pich A
Title
Identification of D-proline reductase from Clostridium sticklandii as a selenoenzyme and indications for a catalytically active pyruvoyl group derived from a cysteine residue by cleavage of a proprotein.
In vitro processing of the proproteins GrdE of protein B of glycine reductase and PrdA of D-proline reductase from Clostridium sticklandii: formation of a pyruvoyl group from a cysteine residue.
Fonknechten N, Chaussonnerie S, Tricot S, Lajus A, Andreesen JR, Perchat N, Pelletier E, Gouyvenoux M, Barbe V, Salanoubat M, Le Paslier D, Weissenbach J, Cohen GN, Kreimeyer A
Title
Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence.