Biosynthesis of mammalian O-mannosyl glycans is initiated by the transfer of mannose from mannose-P-Dol to serine or threonine residue, followed by extensions with N-acetylglucosamine (GlcNAc) and galactose (Gal) to generate core M1, M2 and M3 glycans. Core M1 and M2 glycans can then be further attached by fucose residues, sialic acid terminals and sulfatded glucuroinc acid terminals. Core M3 glycan is involved in the synthesis of alpha-dystroglycan, a heavily glycosylated protein found in muscle and brain tissues. Core M3 glycan contains a tandem repeat of ribitol 5-phosphate (Rbo5P) and -alpha3-GlcA-beta3-Xyl- repeating structures. Defects of genes encoding core glycans and modified core M3 glycans are associated with various congenital diseases, such as muscular dystrophies caused by reduced O-mannosylation of alpha-dystroglycan in skeletal muscles [DS:H00120].
Kanagawa M, Kobayashi K, Tajiri M, Manya H, Kuga A, Yamaguchi Y, Akasaka-Manya K, Furukawa J, Mizuno M, Kawakami H, Shinohara Y, Wada Y, Endo T, Toda T
Title
Identification of a Post-translational Modification with Ribitol-Phosphate and Its Defect in Muscular Dystrophy.