KEGG   PATHWAY: ath00920
Entry
ath00920                    Pathway                                
Name
Sulfur metabolism - Arabidopsis thaliana (thale cress)
Description
Sulfur is an essential element for life and the metabolism of organic sulfur compounds plays an important role in the global sulfur cycle. Sulfur occurs in various oxidation states ranging from +6 in sulfate to -2 in sulfide (H2S). Sulfate reduction can occur in both an energy consuming assimilatory pathway and an energy producing dissimilatory pathway. The assimilatory pathway, which is found in a wide range of organisms, produces reduced sulfur compounds for the biosynthesis of S-containing amino acids and does not lead to direct excretion of sulfide. In the dissimilatory pathway, which is restricted to obligatory anaerobic bacterial and archaeal lineages, sulfate (or sulfur) is the terminal electron acceptor of the respiratory chain producing large quantities of inorganic sulfide. Both pathways start from the activation of sulfate by reaction with ATP to form adenylyl sulfate (APS). In the assimilatory pathway [MD:M00176] APS is converted to 3'-phosphoadenylyl sulfate (PAPS) and then reduced to sulfite, and sulfite is further reduced to sulfide by the assimilatory sulfite reductase. In the dissimilatory pathway [MD:M00596] APS is directly reduced to sulfite, and sulfite is further reduced to sulfide by the dissimilatory sulfite reductase. The capacity for oxidation of sulfur is quite widespread among bacteria and archaea, comprising phototrophs and chemolithoautotrophs. The SOX (sulfur-oxidation) system [MD:M00595] is a well-known sulfur oxidation pathway and is found in both photosynthetic and non-photosynthetic sulfur-oxidizing bacteria. Green sulfur bacteria and purple sulfur bacteria carry out anoxygenic photosynthesis with reduced sulfur compounds such as sulfide and elemental sulfur, as well as thiosulfate (in some species with the SOX system), as the electron donor for photoautotrophic growth. In some chemolithoautotrophic sulfur oxidizers (such as Thiobacillus denitrificans), it has been suggested that dissimilatory sulfur reduction enzymes operate in the reverse direction, forming a sulfur oxidation pathway from sulfite to APS and then to sulfate.
Class
Metabolism; Energy metabolism
Pathway map
ath00920  Sulfur metabolism
ath00920

Module
ath_M00021  Cysteine biosynthesis, serine => cysteine [PATH:ath00920]
ath_M00987  Assimilatory sulfate reduction, plants, sulfate => H2S [PATH:ath00920]
Other DBs
GO: 0006790
Organism
Arabidopsis thaliana (thale cress) [GN:ath]
Gene
AT1G16460  RDH2; rhodanese homologue 2 [KO:K01011] [EC:2.8.1.1 2.8.1.2]
AT1G19920  APS2; Pseudouridine synthase/archaeosine transglycosylase-like family protein [KO:K13811] [EC:2.7.7.4 2.7.1.25]
AT1G53580  GLY3; glyoxalase II 3 [KO:K17725] [EC:1.13.11.18]
AT1G55880  [KO:K01738] [EC:2.5.1.47]
AT1G55920  SERAT2;1; serine acetyltransferase 2;1 [KO:K00640] [EC:2.3.1.30]
AT1G62180  APR2; 5'adenylylphosphosulfate reductase 2 [KO:K05907] [EC:1.8.4.9]
AT1G79230  MST1; mercaptopyruvate sulfurtransferase 1 [KO:K01011] [EC:2.8.1.1 2.8.1.2]
AT2G14750  APK; APS kinase [KO:K00860] [EC:2.7.1.25]
AT2G17640  ATSERAT3;1; Trimeric LpxA-like enzymes superfamily protein [KO:K00640] [EC:2.3.1.30]
AT2G43750  OASB; O-acetylserine (thiol) lyase B [KO:K01738] [EC:2.5.1.47]
AT3G01910  SOX; sulfite oxidase [KO:K00387] [EC:1.8.3.1]
AT3G03900  APK3; adenosine-5'-phosphosulfate (APS) kinase 3 [KO:K00860] [EC:2.7.1.25]
AT3G04940  CYSD1; cysteine synthase D1 [KO:K01738] [EC:2.5.1.47]
AT3G13110  SERAT2;2; serine acetyltransferase 2;2 [KO:K00640] [EC:2.3.1.30]
AT3G22460  OASA2; O-acetylserine (thiol) lyase (OAS-TL) isoform A2 [KO:K01738] [EC:2.5.1.47]
AT3G22890  APS1; ATP sulfurylase 1 [KO:K13811] [EC:2.7.7.4 2.7.1.25]
AT3G23800  SBP3; selenium-binding protein 3 [KO:K17285] [EC:1.8.3.4]
AT3G59760  OASC; O-acetylserine (thiol) lyase isoform C [KO:K01738] [EC:2.5.1.47]
AT3G61440  CYSC1; cysteine synthase C1 [KO:K13034] [EC:2.5.1.47 4.4.1.9]
AT4G04610  APR1; APS reductase 1 [KO:K05907] [EC:1.8.4.9]
AT4G05090  [KO:K01082] [EC:3.1.3.7]
AT4G14030  SBP1; selenium-binding protein 1 [KO:K17285] [EC:1.8.3.4]
AT4G14040  SBP2; selenium-binding protein 2 [KO:K17285] [EC:1.8.3.4]
AT4G14680  APS3; Pseudouridine synthase/archaeosine transglycosylase-like family protein [KO:K13811] [EC:2.7.7.4 2.7.1.25]
AT4G14880  OASA1; O-acetylserine (thiol) lyase (OAS-TL) isoform A1 [KO:K01738] [EC:2.5.1.47]
AT4G16566  HINT4; histidine triad nucleotide-binding 4 [KO:K22966]
AT4G21990  APR3; APS reductase 3 [KO:K05907] [EC:1.8.4.9]
AT4G35640  SERAT3;2; serine acetyltransferase 3;2 [KO:K00640] [EC:2.3.1.30]
AT4G39940  AKN2; APS-kinase 2 [KO:K00860] [EC:2.7.1.25]
AT5G04590  SIR; sulfite reductase [KO:K00392] [EC:1.8.7.1]
AT5G09290  [KO:K15422] [EC:3.1.3.7 3.1.3.57]
AT5G28020  CYSD2; cysteine synthase D2 [KO:K01738] [EC:2.5.1.47]
AT5G28030  DES1; L-cysteine desulfhydrase 1 [KO:K01738] [EC:2.5.1.47]
AT5G43780  APS4; Pseudouridine synthase/archaeosine transglycosylase-like family protein [KO:K13811] [EC:2.7.7.4 2.7.1.25]
AT5G54390  HL; HAL2-like protein [KO:K01082] [EC:3.1.3.7]
AT5G56760  SERAT1;1; serine acetyltransferase 1;1 [KO:K00640] [EC:2.3.1.30]
AT5G63980  SAL1; SAL1 phosphatase-like protein [KO:K15422] [EC:3.1.3.7 3.1.3.57]
AT5G63990  [KO:K15422] [EC:3.1.3.7 3.1.3.57]
AT5G64000  SAL2; Inositol monophosphatase family protein [KO:K15422] [EC:3.1.3.7 3.1.3.57]
AT5G67520  APK4; adenosine-5'-phosphosulfate (APS) kinase 4 [KO:K00860] [EC:2.7.1.25]
Compound
C00033  Acetate
C00042  Succinate
C00053  3'-Phosphoadenylyl sulfate
C00054  Adenosine 3',5'-bisphosphate
C00059  Sulfate
C00065  L-Serine
C00073  L-Methionine
C00084  Acetaldehyde
C00087  Sulfur
C00094  Sulfite
C00097  L-Cysteine
C00155  L-Homocysteine
C00163  Propanoate
C00224  Adenylyl sulfate
C00245  Taurine
C00263  L-Homoserine
C00283  Hydrogen sulfide
C00320  Thiosulfate
C00409  Methanethiol
C00511  Acrylic acid
C00580  Dimethyl sulfide
C00894  Propenoyl-CoA
C00979  O-Acetyl-L-serine
C01013  3-Hydroxypropanoate
C01118  O-Succinyl-L-homoserine
C01180  4-Methylthio-2-oxobutanoic acid
C01861  Trithionate
C02084  Tetrathionate
C03172  S-Methyl-L-methionine
C03920  2-(Methylthio)ethanesulfonate
C04022  S,S-Dimethyl-beta-propiothetin
C08276  3-(Methylthio)propanoate
C11142  Dimethyl sulfone
C11143  Dimethyl sulfoxide
C11145  Methanesulfonic acid
C15521  Alkanesulfonate
C17267  S-Sulfanylglutathione
C19692  Polysulfide
C20870  3-(Methylthio)propanoyl-CoA
C20955  3-(Methylthio)acryloyl-CoA
C22315  (2R)-2-Hydroxy-4-(methylsulfanyl)butanoate
C22316  (2R)-4-(Dimethylsulfaniumyl)-2-hydroxybutanoate
C22834  Protein-trisulfide
C23001  3-Aminopropyl(dimethyl)sulfanium
C23002  3-Dimethylsulfoniopropionaldehyde
Reference
  Authors
Grein F, Ramos AR, Venceslau SS, Pereira IA
  Title
Unifying concepts in anaerobic respiration: Insights from dissimilatory sulfur metabolism.
  Journal
Biochim Biophys Acta 1827:145-60 (2013)
DOI:10.1016/j.bbabio.2012.09.001
Reference
  Authors
Fauque GD, Barton LL
  Title
Hemoproteins in dissimilatory sulfate- and sulfur-reducing prokaryotes.
  Journal
Adv Microb Physiol 60:1-90 (2012)
DOI:10.1016/B978-0-12-398264-3.00001-2
Reference
  Authors
Sakurai H, Ogawa T, Shiga M, Inoue K
  Title
Inorganic sulfur oxidizing system in green sulfur bacteria.
  Journal
Photosynth Res 104:163-76 (2010)
DOI:10.1007/s11120-010-9531-2
Reference
  Authors
Falkenby LG, Szymanska M, Holkenbrink C, Habicht KS, Andersen JS, Miller M, Frigaard NU
  Title
Quantitative proteomics of Chlorobaculum tepidum: insights into the sulfur metabolism of a phototrophic green sulfur bacterium.
  Journal
FEMS Microbiol Lett 323:142-50 (2011)
DOI:10.1111/j.1574-6968.2011.02370.x
Reference
  Authors
Gregersen LH, Bryant DA, Frigaard NU
  Title
Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria.
  Journal
Front Microbiol 2:116 (2011)
DOI:10.3389/fmicb.2011.00116
Reference
  Authors
Beller HR, Chain PS, Letain TE, Chakicherla A, Larimer FW, Richardson PM, Coleman MA, Wood AP, Kelly DP.
  Title
The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans.
  Journal
J Bacteriol 188:1473-88 (2006)
DOI:10.1128/JB.188.4.1473-1488.2006
Reference
PMID:9695921
  Authors
Pott AS, Dahl C
  Title
Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur.
  Journal
Microbiology 144 ( Pt 7):1881-94 (1998)
DOI:10.1099/00221287-144-7-1881
Reference
  Authors
Frigaard NU, Dahl C
  Title
Sulfur metabolism in phototrophic sulfur bacteria.
  Journal
Adv Microb Physiol 54:103-200 (2009)
DOI:10.1016/S0065-2911(08)00002-7
Related
pathway
ath00260  Glycine, serine and threonine metabolism
ath00270  Cysteine and methionine metabolism
ath00640  Propanoate metabolism
KO pathway
ko00920   

DBGET integrated database retrieval system