KEGG   PATHWAY: ctrs00020
Entry
ctrs00020                   Pathway                                
Name
Citrate cycle (TCA cycle) - Chlamydia trachomatis E/SotonE8
Description
The citrate cycle (TCA cycle, Krebs cycle) is an important aerobic pathway for the final steps of the oxidation of carbohydrates and fatty acids. The cycle starts with acetyl-CoA, the activated form of acetate, derived from glycolysis and pyruvate oxidation for carbohydrates and from beta oxidation of fatty acids. The two-carbon acetyl group in acetyl-CoA is transferred to the four-carbon compound of oxaloacetate to form the six-carbon compound of citrate. In a series of reactions two carbons in citrate are oxidized to CO2 and the reaction pathway supplies NADH for use in the oxidative phosphorylation and other metabolic processes. The pathway also supplies important precursor metabolites including 2-oxoglutarate. At the end of the cycle the remaining four-carbon part is transformed back to oxaloacetate. According to the genome sequence data, many organisms seem to lack genes for the full cycle [MD:M00009], but contain genes for specific segments [MD:M00010 M00011].
Class
Metabolism; Carbohydrate metabolism
Pathway map
ctrs00020  Citrate cycle (TCA cycle)
ctrs00020

Module
ctrs_M00011  Citrate cycle, second carbon oxidation, 2-oxoglutarate => oxaloacetate [PATH:ctrs00020]
ctrs_M00307  Pyruvate oxidation, pyruvate => acetyl-CoA [PATH:ctrs00020]
Other DBs
GO: 0006099
Organism
Chlamydia trachomatis E/SotonE8 [GN:ctrs]
Gene
SOTONE8_00057  2-oxoglutarate dehydrogenase E1 component [KO:K00164] [EC:1.2.4.2]
SOTONE8_00058  dihydrolipoamide succinyltransferase [KO:K00658] [EC:2.3.1.61]
SOTONE8_00426  branched-chain alpha-keto acid dehydrogenase subunit E2 [KO:K00658] [EC:2.3.1.61]
SOTONE8_00595  dihydrolipoamide dehydrogenase [KO:K00382] [EC:1.8.1.4]
SOTONE8_00883  succinyl-CoA synthetase subunit alpha [KO:K01902] [EC:6.2.1.5]
SOTONE8_00882  succinyl-CoA synthetase subunit beta [KO:K01903] [EC:6.2.1.5]
SOTONE8_00630  succinate dehydrogenase flavoprotein subunit [KO:K00239] [EC:1.3.5.1]
SOTONE8_00629  succinate dehydrogenase iron-sulfur subunit [KO:K00240] [EC:1.3.5.1]
SOTONE8_00632  Succinate dehydrogenase/fumarate reductase, cytochrome b subunit [KO:K00241]
SOTONE8_00918  fumarate hydratase [KO:K01679] [EC:4.2.1.2]
SOTONE8_00401  malate dehydrogenase [KO:K00024] [EC:1.1.1.37]
SOTONE8_00761  phosphoenolpyruvate carboxykinase [KO:K01596] [EC:4.1.1.32]
SOTONE8_00259  hypothetical protein [KO:K00161] [EC:1.2.4.1]
SOTONE8_00260  pyruvate dehydrogenase subunit beta [KO:K00162] [EC:1.2.4.1]
SOTONE8_00261  branched-chain alpha-keto acid dehydrogenase subunit E2 [KO:K00627] [EC:2.3.1.12]
Compound
C00022  Pyruvate
C00024  Acetyl-CoA
C00026  2-Oxoglutarate
C00036  Oxaloacetate
C00042  Succinate
C00068  Thiamin diphosphate
C00074  Phosphoenolpyruvate
C00091  Succinyl-CoA
C00122  Fumarate
C00149  (S)-Malate
C00158  Citrate
C00311  Isocitrate
C00417  cis-Aconitate
C05125  2-(alpha-Hydroxyethyl)thiamine diphosphate
C05379  Oxalosuccinate
C05381  3-Carboxy-1-hydroxypropyl-ThPP
C15972  Enzyme N6-(lipoyl)lysine
C15973  Enzyme N6-(dihydrolipoyl)lysine
C16254  [Dihydrolipoyllysine-residue succinyltransferase] S-succinyldihydrolipoyllysine
C16255  [Dihydrolipoyllysine-residue acetyltransferase] S-acetyldihydrolipoyllysine
Reference
  Authors
Nishizuka Y (ed).
  Title
[Metabolic Maps] (In Japanese)
  Journal
Tokyo Kagaku Dojin (1980)
Reference
  Authors
Nishizuka Y, Seyama Y, Ikai A, Ishimura Y, Kawaguchi A (eds).
  Title
[Cellular Functions and Metabolic Maps] (In Japanese)
  Journal
Tokyo Kagaku Dojin (1997)
Reference
  Authors
Michal G.
  Title
Biochemical Pathways
  Journal
Wiley (1999)
Related
pathway
ctrs00010  Glycolysis / Gluconeogenesis
ctrs00061  Fatty acid biosynthesis
ctrs00190  Oxidative phosphorylation
ctrs00250  Alanine, aspartate and glutamate metabolism
ctrs00280  Valine, leucine and isoleucine degradation
ctrs00470  D-Amino acid metabolism
ctrs00630  Glyoxylate and dicarboxylate metabolism
KO pathway
ko00020   
LinkDB

DBGET integrated database retrieval system