KEGG   PATHWAY: rdn00020
Entry
rdn00020                    Pathway                                
Name
Citrate cycle (TCA cycle) - Rothia dentocariosa
Description
The citrate cycle (TCA cycle, Krebs cycle) is an important aerobic pathway for the final steps of the oxidation of carbohydrates and fatty acids. The cycle starts with acetyl-CoA, the activated form of acetate, derived from glycolysis and pyruvate oxidation for carbohydrates and from beta oxidation of fatty acids. The two-carbon acetyl group in acetyl-CoA is transferred to the four-carbon compound of oxaloacetate to form the six-carbon compound of citrate. In a series of reactions two carbons in citrate are oxidized to CO2 and the reaction pathway supplies NADH for use in the oxidative phosphorylation and other metabolic processes. The pathway also supplies important precursor metabolites including 2-oxoglutarate. At the end of the cycle the remaining four-carbon part is transformed back to oxaloacetate. According to the genome sequence data, many organisms seem to lack genes for the full cycle [MD:M00009], but contain genes for specific segments [MD:M00010 M00011].
Class
Metabolism; Carbohydrate metabolism
Pathway map
rdn00020  Citrate cycle (TCA cycle)
rdn00020

Module
rdn_M00003  Gluconeogenesis, oxaloacetate => fructose-6P [PATH:rdn00020]
rdn_M00011  Citrate cycle, second carbon oxidation, 2-oxoglutarate => oxaloacetate [PATH:rdn00020]
rdn_M00307  Pyruvate oxidation, pyruvate => acetyl-CoA [PATH:rdn00020]
Other DBs
GO: 0006099
Organism
Rothia dentocariosa [GN:rdn]
Gene
HMPREF0733_10005  lpdA; dihydrolipoyl dehydrogenase [KO:K00382] [EC:1.8.1.4]
HMPREF0733_10006  sucB; 2-oxoglutarate dehydrogenase, E2 component, dihydrolipoamide succinyltransferase [KO:K00627] [EC:2.3.1.12]
HMPREF0733_10027  sucA; oxoglutarate dehydrogenase (succinyl-transferring), E1 component [KO:K01616] [EC:2.2.1.5 4.1.1.71 1.2.4.2 2.3.1.61]
HMPREF0733_10536  [KO:K01902] [EC:6.2.1.5]
HMPREF0733_10537  sucC; succinate-CoA ligase, beta subunit [KO:K01903] [EC:6.2.1.5]
HMPREF0733_11249  [KO:K01596] [EC:4.1.1.32]
HMPREF0733_11359  sdhC; succinate dehydrogenase, cytochrome b556 subunit [KO:K00241]
HMPREF0733_11360  sdhD; succinate dehydrogenase, hydrophobic membrane anchor protein [KO:K00242]
HMPREF0733_11361  sdhA; succinate dehydrogenase, flavoprotein subunit [KO:K00239] [EC:1.3.5.1]
HMPREF0733_11362  sQR; succinate dehydrogenase iron-sulfur subunit [KO:K00240] [EC:1.3.5.1]
HMPREF0733_11390  fumC; fumarate hydratase [KO:K01679] [EC:4.2.1.2]
HMPREF0733_12159  aceE; pyruvate dehydrogenase (acetyl-transferring), homodimeric type [KO:K00163] [EC:1.2.4.1]
HMPREF0733_12206  mqo; malate dehydrogenase (quinone) [KO:K00116] [EC:1.1.5.4]
Compound
C00022  Pyruvate
C00024  Acetyl-CoA
C00026  2-Oxoglutarate
C00036  Oxaloacetate
C00042  Succinate
C00068  Thiamin diphosphate
C00074  Phosphoenolpyruvate
C00091  Succinyl-CoA
C00122  Fumarate
C00149  (S)-Malate
C00158  Citrate
C00311  Isocitrate
C00417  cis-Aconitate
C05125  2-(alpha-Hydroxyethyl)thiamine diphosphate
C05379  Oxalosuccinate
C05381  3-Carboxy-1-hydroxypropyl-ThPP
C15972  Enzyme N6-(lipoyl)lysine
C15973  Enzyme N6-(dihydrolipoyl)lysine
C16254  [Dihydrolipoyllysine-residue succinyltransferase] S-succinyldihydrolipoyllysine
C16255  [Dihydrolipoyllysine-residue acetyltransferase] S-acetyldihydrolipoyllysine
Reference
  Authors
Nishizuka Y (ed).
  Title
[Metabolic Maps] (In Japanese)
  Journal
Tokyo Kagaku Dojin (1980)
Reference
  Authors
Nishizuka Y, Seyama Y, Ikai A, Ishimura Y, Kawaguchi A (eds).
  Title
[Cellular Functions and Metabolic Maps] (In Japanese)
  Journal
Tokyo Kagaku Dojin (1997)
Reference
  Authors
Michal G.
  Title
Biochemical Pathways
  Journal
Wiley (1999)
Related
pathway
rdn00010  Glycolysis / Gluconeogenesis
rdn00061  Fatty acid biosynthesis
rdn00071  Fatty acid degradation
rdn00190  Oxidative phosphorylation
rdn00220  Arginine biosynthesis
rdn00250  Alanine, aspartate and glutamate metabolism
rdn00280  Valine, leucine and isoleucine degradation
rdn00350  Tyrosine metabolism
rdn00470  D-Amino acid metabolism
rdn00630  Glyoxylate and dicarboxylate metabolism
KO pathway
ko00020   

DBGET integrated database retrieval system